If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+30=160
We move all terms to the left:
x^2+3x+30-(160)=0
We add all the numbers together, and all the variables
x^2+3x-130=0
a = 1; b = 3; c = -130;
Δ = b2-4ac
Δ = 32-4·1·(-130)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-23}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+23}{2*1}=\frac{20}{2} =10 $
| -6x-15=18 | | b+-13=-32 | | -26=-6=5y | | x-4x=1-12 | | -6/5w-2=-10 | | -19+x/5=-7 | | -6x+11x=73=82 | | 73=3x=13 | | 14r−9r=10 | | r+17=5 | | 91=9x+19 | | 2w=8=34 | | -6=a+9 | | -11x-142+4x=103 | | z+(5*13+23)=180 | | 4(x+5)=92 | | 2/3(y-4)=6 | | 5x+23=8x-16 | | x-12x-108=200 | | 3/4m+1=31 | | 5+1/5h=-2 | | 5*16-7=z | | 5x-7+7x-5=180 | | -5x-83-4x=88 | | z+(7*9+28)=180 | | 2/3z=−2 | | 2+5x=50 | | 8x-148+x=158 | | 23z=−2 | | 7x+28+89=180 | | 28z-16-17z=12 | | 48=2w-4w-24 |